The Cuntz-Pimsner extension and mapping cone exact sequences

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Certain Cuntz-pimsner Algebras

Let A be a separable unital C*-algebra and let π : A → L(H) be a faithful representation of A on a separable Hilbert space H such that π(A) ∩ K(H) = {0}. We show that OE , the Cuntz-Pimsner algebra associated to the Hilbert A-bimodule E = H⊗C A, is simple and purely infinite. If A is nuclear and belongs to the bootstrap class to which the UCT applies, then the same applies to OE . Hence by the ...

متن کامل

Exactness of Cuntz–pimsner C–algebras

Let H be a full Hilbert bimodule over a C-algebra A. We show that the Cuntz–Pimsner algebra associated to H is exact if and only if A is exact. Using this result, we give alternative proofs for exactness of reduced amalgemated free products of exact C– algebras. In the case that A is a finite–dimensional C–algebra, we also show that the Brown–Voiculescu topological entropy of Bogljubov automorp...

متن کامل

Cuntz-Pimsner C-algebras associated with subshifts

By using C∗-correspondences and Cuntz-Pimsner algebras, we associate to every subshift (also called a shift space) X a C∗-algebra OX, which is a generalization of the Cuntz-Krieger algebras. We show that OX is the universal C ∗-algebra generated by partial isometries satisfying relations given by X. We also show thatOX is a one-sided conjugacy invariant of X.

متن کامل

On the nuclearity of certain Cuntz-Pimsner algebras

In the present paper, we give a short proof of the nuclearity property of a class of CuntzPimsner algebras associated with a HilbertA-bimodule M, whereA is a separable and nuclear C*-algebra. We assume that the left A-action on the bimodule M is given in terms of compact module operators and that M is direct summand of the standard Hilbert module over A.

متن کامل

The Completely Bounded Approximation Property for Extended Cuntz–pimsner Algebras

The extended Cuntz–Pimsner algebra E(H), introduced by Pimsner, is constructed from a Hilbert B, B–bimodule H over a C∗–algebra B. In this paper we investigate the Haagerup invariant Λ(·) for these algebras, the main result being that Λ(E(H)) = Λ(B) when H is full over B. In particular, E(H) has the completely bounded approximation property if and only if the same is true for B.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 2019

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-115634